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form of the RHD equations. One advantage of this approach
is the possibility of using numerical techniques specially de-An extension to 1D relativistic hydrodynamics of the piecewise

parabolic method (PPM) of Colella and Woodward using an exact signed to solve nonlinear hyperbolic systems of conservation
relativistic Riemann solver is presented. Results of several tests laws [9]. In fact, the codes described in Refs. [9, 12, 15] and
involving ultrarelativistic flows, strong shocks and interacting dis- the code HLLE of [14] are based on Godunov-type methods andcontinuities are shown. A comparison with Godunov’s method dem-

an implementation of different approximate Riemann solversonstrates that the main features of PPM are retained in our relativis-
(readers lacking knowledge of Godunov-type methods and Rie-tic version. Q 1996 Academic Press, Inc.

mann solvers should consult, e.g., the recent book of LeVeque
[16]). Judging from the results of several test calculations shown

1. INTRODUCTION in these references, it can be concluded that an accurate descrip-
tion of ultrarelativistic flows with strong shock waves can be

Relativistic hydrodynamics (RHD here after) plays an im- accomplished by writing the system of RHD in conservation
portant role in different fields of physics, e.g., in astrophysics, form and using Riemann solvers.
cosmology, and nuclear physics. In extragalactic jets emanating In a recent paper [17] we have derived the exact solution of
from core dominated radio sources associated with active galac- the Riemann problem for ideal gases in relativistic hydrodynam-
tic nuclei [1] or in current laboratory heavy-ion reactions [2] ics. Similarly to the classical (Newtonian) case, the solution
even ultrarelativistic flows are encountered. The necessity of can be obtained by solving an implicit algebraic equation which
modeling such relativistic flows which also involve strong determines the pressure in the intermediate states that develop
shocks is triggering the development of relativistic hydro-codes. after breakup of the initial discontinuity. Our solution extends

The first code to solve the RHD equations on an Eulerian previously known particular solutions (i.e., [18, 19]) to the
grid was developed by Wilson [3, 4] and collaborators [5, 6]. general case of two arbitrary initial states. It can be used to
The code is based on explicit finite differencing techniques and construct an exact Riemann solver and allows one to formulate
uses a monotonic transport algorithm to discretize the advection

a relativistic version of Godunov’s method.
terms of the RHD equations. The stabilization of the code

On the other hand, the piecewise parabolic method ([20],
across shocks is accomplished by means of a von Neumann

PPM hereafter), is a well-known higher-order extension of Go-
and Richtmyer [7] artificial viscosity. This code has been widely

dunov’s method being used extensively in classical hydrody-
used in numerical cosmology, axisymmetric relativistic stellar

namics. Besides the use of an exact Riemann solver, the key
collapse, accretion onto compact objects, and, more recently,

ingredients responsible for the accuracy of PPM are a parabolicin collisions of heavy ions. The code’s acccuracy decreases as
interpolation of variables inside numerical cells and specialthe flow becomes strongly relativistic (flow Lorentz factor,
monotonicity constraints and discontinuity steepeners to keepW . 2; see [5]).
discontinuities sharp and free of numerical oscillations. Finally,Norman and Winkler [8] proposed a fully implicit treatment
solving Riemann problems for states averaged over the domainof the equations in order to overcome the numerical problems
of dependence of the interfaces makes PPM second-order accu-in the ultrarelativistic limit (W @ 1). Recently, several new
rate in time. In this paper, we present an extension of PPM inmethods for numerical RHD have appeared [9–15] which with
its direct Eulerian version to one-dimensional RHD, in whichthe exception of [11] (smoothed particle hydrodynamics) and
all the key ingredients of PPM have properly been generalized.[10] (flux-corrected transport method for the equations of rela-

The paper is organized as follows. In Section 2 we definetivistic magnetohydrodynamics) are based on the conservation
the RHD equations in an Eulerian reference frame in conserva-
tion form and describe the transformation of quantities from* Present address: Departamento de Astronomı́a y Astrofı́sica, Universidad

de Valencia, 46100 Burjassot, Valencia, Spain. the Eulerian frame to the rest (proper) frame of a fluid element.
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2 MARTÍ AND MÜLLER

This transformation is a key ingredient in our algorithm. Section equations and throughout the whole paper the speed of light is
set equal to unity.3 is devoted to a description of the reconstruction procedure,

the determination of effective second-order-accurate (in time) From Eqs. (4)–(6) the following relation between p, v, and
the conserved quantities can easily be derived:left and right states defining the Riemann problems and the

calculation of the numerical fluxes using an exact relativistic
Riemann solver. Several numerical test calculations including

v 5
S

t 1 D 1 p
. (9)the RHD generalization of the interaction of two blast waves

[22] are presented in Section 4. In Appendix I, the explicit
formulae used in the interpolation step are given. Finally, the In the non-relativistic limit (v R 0, h R 1) D, S, and t
analytical solution corresponding to the problem of the interac- approach their Newtonian counterparts, r, rv, and rE 5 r« 1
tion of two relativistic blast waves introduced in Section 4 is rv2/2, and Eqs. (1)–(3) reduce to the classical ones,
described in Appendix II.

­r

­t
1

­rv
­x

5 0 (10)
2. THE EQUATIONS OF RELATIVISTIC

HYDRODYNAMICS
­rv
­t

1
­(rv2 1 p)

­x
5 0 (11)

In an Eulerian reference frame, the equations of RHD of a
perfect fluid in one spatial (Cartesian) coordinate x can be ­rE

­t
1

­v(rE 1 p)
­x

5 0. (12)written in conservation form as

The system of Eqs. (1)–(3) with definitions (4)–(8) is closed­D
­t

1
­Dv
­x

5 0 (1)
by means of an equation of state (EOS), which we shall assume
as given in the form­S

­t
1

­(Sv 1 p)
­x

5 0 (2)

(13)p 5 p(r, «).
­t

­t
1

­(S 2 Dv)
­x

5 0, (3)
In order to use the exact solution of the relativistic Riemann
problem derived in [17] we restrict ourselves to an ideal gas
EOS, i.e.,where D, S, and t are the rest-mass density, the momentum

density, and the energy density in a fixed frame, respectively.
(14)p 5 (c 2 1)r«,These variables are related to quantities in the local rest frame

of the fluid through
where c is the adiabatic index. A very important quantity de-
rived from the EOS is the local sound velocity c, which in ourD 5 rW (4)
case is defined through

S 5 rhW 2v (5)

t 5 rhW 2 2 p 2 D, (6) c2 5
cp
rh

. (15)

where r, p, v, W, and h are the proper rest-mass density, the
In any RHD code evolving the conserved quantities hD, S,pressure, the fluid velocity, the fluid Lorentz factor, and the

tj in time, the variables hp, r, «, vj have to be computed fromspecific enthalpy, respectively. The latter two quantities are
the conserved quantities at least once per time step. In ourgiven by
approach, like in Refs. [9, 12], this is achieved using relations
(4)–(8) and (14) to construct the function

W 5
1

Ï1 2 v2
(7)

(16)f (p) 5 (c 2 1)rp«p 2 p

and with rp and «p given by

h 5 1 1 « 1
p
r

, (8) rp 5
D

Wp
(17)

andwhere « is the specific internal energy. Note that in the previous



PPM METHOD FOR 1D RELATIVISTIC HYDRODYNAMICS 3

ues. Then, we concentrate on the construction of left and right
«p 5

t 1 D(1 2 Wp) 1 p(1 2 W 2
p)

DWp
, (18) interface states averaged over the domain of dependence of

each interface, which are used as initial states for the Riemann
problem to be solved at each interface. Finally, we discuss therespective, where
solution of the relativistic Riemann problem and the computa-
tion of the numerical fluxes.

Wp 5
1

Ï1 2 (S/(t 1 D 1 p))2
. (19)

3.1. Interpolation Procedure

The zero of f (p) in the physically allowed domain p [ ]pmin, In our relativistic version of PPM the interpolation algorithm
y[ determines the pressure, the monotonicity of f (p) in that described in the original paper by Colella and Woodward [20]
domain ensuring the uniqueness of the solution. The lower is applied to zone-averaged values of V 5 (p, r, v), which are
bound of the physically allowed domain, pmin, defined by obtained from zone averaged values of the conserved quanti-

ties uj.
(20)pmin 5 uSu 2 t 2 D, Interpolating in V instead of, for example, in u has several

advantages. First, in this case the solution of Eq. (16), which
involves an iteration, has to be computed only once per zoneis obtained from (9) by taking into account that (in our units)
per time step, and second, one can easily avoid the occurrenceuvu # 1. Knowing p, Eq. (9) then directly gives v, while the
of unphysical values (i.e., larger than the speed of light) forremaining state quantities are straightforwardly obtained from
the interpolated flow velocity. Third, interpolating in p andEqs. (4)–(8).
r simplifies the implementation of the contact discontinuity
detector (see Appendix I).3. A RELATIVISTIC VERSION OF PPM

Like in the Newtonian version of PPM, we determine for
Equations (1)–(3) can be written in the form each zone j the quartic polynomial which has zone-averaged

values aj22, aj21, aj, aj11, aj12 to interpolate the structure inside
the zone, where a is one of the quantities p, r, or v. Using this­u

­t
1

­F(u)
­x

5 0 (21)
quartic polynomial values of a at the left and right interfaces
of the zones, aL, j and aR, j, are obtained. These reconstructed
values are then modified such that the parabolic profile, whichwith
is uniquely determined by aL, j, aR, j, and aj, is monotonic inside
the zone (monotonization). Finally, the interpolation procedure(22)u 5 (D, S, t)T

is slightly modified near discontinuities to produce narrower
jumps (see Appendix I).and

3.2. Construction of Effective Left and Right States(23)F 5 (Dv, Sv 1 p, S 2 Dv)T.

To obtain time-averaged fluxes at an interface j 1 As separating
In order to solve system (21) we consider the conservative zones j and j 1 1, in PPM two spatially averaged states,
difference scheme Vj11/2,S (S 5 L, R, where L and R denote the left and right sides

of the interface, respectively), are constructed, which take into
account the characteristic information reaching the interfaceun11

j 5 un
j 1

Dt
Dx

hF̂j21/2 2 F̂j11/2j, (24)
from both sides during the time step.

In the Lagrangian version of PPM this implies to calculate
the average of V over the domain of dependence of each inter-where un

j and un11
j are the zone-averaged values of the state

vector u of zone j at times t 5 tn and t 5 tn11 5 tn 1 Dt, face. In its direct Eulerian version, however, the construction
of the effective states is more complicated, because the numberrespectively. F̂j61/2 are the time-averaged numerical fluxes at the

right and left interfaces of zone j. In a Godunov-type difference of characteristics reaching the interface of a zone from a given
side can vary from zero to three. In a first step, one computesscheme appropriate left and right states are constructed from

the zone-averaged values, which are then used to calculate the the average over that part of the domain of dependence of each
interface, which lies to the left and right of the interface. Thenumerical fluxes F̂j11/2 by solving the corresponding Riemann

problem. initial guess is then corrected by subtracting that amount of
each characteristic which will not reach the interface duringIn the remainder of this section we discuss in detail how the

numerical fluxes are calculated in our relativistic version of the time step (see Fig. 5 in [20]).
In our relativistic version of PPM the correction of the initialPPM. First, we describe the interpolation procedure used to

reconstruct the variables inside zones from zone-averaged val- guess is obtained by closely following the procedure in [20], but
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TABLE I
b6

j11/2,S 5 7
1

2C̃j11/2,S

Sṽj11/2,S 2 v6
j11/2,S 6

p̃j11/2,S 2 p6
j11/2,S

C̃j11/2,S

D (32)
Spectral Decomposition of Matrix A

Eigenvalues Left eigenvectors Right eigenvectors
b0

j11/2,S 5
r̃j11/2,S 2 r0

j11/2,S

R̃j11/2,S

2
p̃j11/2,S 2 p0

j11/2,S

C̃ 2
j11/2,S

(33)

l2 5
v 2 c

1 2 vc l25 S0,
1
2

, 2
1

2rhW 2cD r2 5 S2
rW 2

c
, 1, 2rhW 2cD

otherwise.
l0 5 v r0 5 (1, 0, 0)l0 5 S1, 0, 2

1
hc2D The quantities a#

j11/2,S (S 5 L, R; a [ hp r, vj) are the averages
of a over that part of the domain of dependence of thel1 5

v 1 c
1 1 vc l1 5 S0,

1
2

,
1

2rhW2cD r1 5 SrW2

c
, 1, rhW2cD

#-characteristic, which lies to the left (right) of the respective
interface. They are calculated using the (monotonized) parabo-Note. Left and right eigenvectors have been chosen such that l# · r#9 5 d##9;
lae determined for a in the interpolation step; i.e.,#, #9 5 2, 0, 1.

a#
j11/2,L 5 aR, j 2

x
2 FaR, j 2 aL, j 2 6 S1 2

2
3

xD
(34)considering the characteristic speeds and Riemann invariants of

the equations of relativistic instead of Newtonian hydrodynam- Saj 2
aL, j 1 aR, j

2 DG,ics. We rewrite system (21) in terms of V in characteristic
form as

where
­V
­t

1 A
­V
­x

5 0, (25)

x 5
max(0, Dtl#(Vj))

xj11/2 2 xj21/2
(35)

where matrix A is defined as

and

a#
j11/2,R 5 aL, j11 1

x
2 FaR, j11 2 aL, j11 1 6 S1 2

2
3

xD
(36)A 51

v
r

1 2 v2c2

2v
hW 2(1 2 v2c2)

0
v(1 2 c2)
1 2 v2c2

1
rhW 4(1 2 v2c2)

0
rhc2

1 2 v2c2

v(1 2 c2)
1 2 v2c2

2. (26)

Saj11 2
aL, j11 1 aR, j11

2 DG,

where

Note that the local sound speed, c, defined in (15) has explicitly
been introduced in matrix A, whose eigenvalues l# (# [ h2, x 5

max(0, 2Dtl#(Vj11))

xj13/2 2 xj11/2
. (37)

0, 1j) and corresponding left and right eigenvectors l# and r#

are given in Table I. In analogy with [20] the effective left and
Note that we have defined x in Eqs. (35) and (37), and henceright states, Vj11/2,S (S 5 L, R), are then found to be
a#

j11/2,S, slightly different from Colella and Woodward ([20]; see
their Eq. (3.5)). However, the resulting b#

j11/2,S, the only quanti-pj11/2,S 5 p̃j11/2,S 1 C̃ 2
j11/2,S(b1

j11/2,S 1 b2
j11/2,S) (27)

ties depending on a#
j11/2,S, are identical to those of [20], because

they have to fulfill Eqs. (30) and (31). With our modifiedvj11/2,S 5 ṽj11/2,S 1 C̃j11/2,S(b1
j11/2,S 2 b2

j11/2,S) (28)
definition of a#

j11/2,S, the quantities ãj11/2,S appearing in Eqs. (27)
rj11/2,S 5 r̃j11/2,S 1 R̃j11/2,S(b1

j11/2,S 2 b0
j11/2,S 1 b2

j11/2,S) (29) to (33) are then simply given by

ãj11/2,L 5 a1
j11/2,L (38)with

ãj11/2,R 5 a2
j11/2,R. (39)

b#
j11/2,L 5 0 if l#(Vj) # 0 (30)

b#
j11/2,R 5 0 if l#(Vj11) $ 0 (31) Finally, the quantities C̃j11/2,S and R̃j11/2,S are defined according to

C̃j11/2,S 5 r̃j11/2,Sh̃j11/2,SW̃ 2
j11/2,Sc̃j11/2,S (40)and
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where 5S(p) (6S(p)) denotes the family of all states which can
R̃j11/2,S 5 r̃2

j11/2,Sh̃j11/2,SW̃ 4
j11/2,S (41) be connected through a rarefaction (shock) with a given state

S ahead of the wave (for more details see [17]). Because the
h̃j11/2,S, W̃j11/2,S, and c̃j11/2,S being given as functions of p̃j11/2,S, Riemann invariants
r̃j11/2,S, and ṽj11/2,S (see Eqs. (8), (7), and (15), respectively).

It is worthwhile to note that the Newtonian limits of
b1

j11/2,S and b2
j11/2,S coincide with the corresponding coefficients J6 5

1
2

ln S1 1 v
1 2 vD6 E c

r
dr (45)

in Eq. (3.7) of [20]. However, the limit of b0
j11/2,S differs from

its Newtonian counterpart, because contrary to [20] we have
are constant through rarefaction waves propagating to the leftused the density instead of the specific volume as a variable
(J1) or right (J2), one can derivefor the characteristic equations.

3.3. Solution of the Riemann Problem and Computation of the expression
the Numerical Fluxes

In Godunov’s approach the numerical fluxes F̂j11/2 are calcu- 5S(p) 5
(1 1 vS)A6(p) 2 (1 2 vS)

(1 1 vS)A6(p) 1 (1 2 vS)
(46)

lated according to

F̂j11/2 5 F(uj11/2), (42) with

where uj11/2 is an approximation to (1/Dt) e u(xj11/2, t) dt, i.e.,
A6(p) 5 SÏc 2 1 2 c(p)

Ïc 2 1 1 c(p)

Ïc 2 1 1 cS

Ïc 2 1 2 cs

D62/Ïc21

(47)the time-averaged value of the solution at xj11/2, which is ob-
tained solving the Riemann problem at xj11/2 with left and right
states Vj11/2,L and Vj11/2,R, respectively.

the 1 (2) sign of A6 corresponding to S 5 L (S 5 R). In Eq.In a recent paper [17] we have shown that an exact solution
(47), cS is the sound speed of the state S, and c(p) is given byof a Riemann problem for a polytropic gas in RHD can be

obtained, in complete analogy to the Newtonian case, by solving
a non-linear algebraic equation.

c(p) 5 S c(c 2 1)p
(c 2 1)rS(p/pS)1/c 1 cpD1/2

. (48)Both in relativistic and Newtonian hydrodynamics the dis-
continuity between the two constant initial states VL and VR

decays into two elementary nonlinear waves (shocks or rarefac- The family of all states 6S(p), which can be connected
tions), one moving towards the initial left state and the other through a shock with a given state S ahead of the wave, is
towards the initial right state. Between the waves two new determined by the shock jump conditions. One obtains (see
states VLp and VRp appear, which are separated from each other [17])
through a contact discontinuity moving along with the fluid.
Across the contact discontinuity, pressure and velocity are con-
tinuous, while the density exhibits a jump. As in classical 6S(p) 5 ShSWSvS 6

p 2 pS

j (p)Ï1 2 V6(p)2
D

hydrodynamics [24] the self-similar character of the flow
through rarefaction waves and the Rankine–Hugoniot condi-
tions across shocks provide the conditions to link the intermedi- FhSWS 1 (p 2 pS)S 1

rSWS
6

vS

j (p)Ï1 2 V6(p)2
DG21

,
ate states VSp (S 5 L, R) with their corresponding initial state

(49)VS. In particular, one can express the velocity of the intermedi-
ate states vSp as a function of the pressure pSp of these states.

where the 1 (2) sign corresponds to S 5 R (S 5 L). V6(p)The smoothness of the velocity across the contact discontinuity
and j (p) denote the shock velocity and the modulus of thethen gives
mass flux across the shock front, respectively. They are given by

vLp(pp) 5 vRp(pp), (43)

V6(p) 5
r2

SW 2
SvS 6 j (p)2Ï1 1 (rS/j (p))2

r2
SW 2

S 1 j (p)2 (50)where pp 5 pLp 5 pRp. This is the above mentioned non-linear
algebraic equation to be solved at each interface in each time
step. The functions vSp(p) are defined by and

vSp(p) 5H5S(p) if p # pS

6S(p) if p . pS,
(44) j (p) 5 !(pS 2 p)@Sh2

S 2 h(p)2

pS 2 p
2

2hS

rS
D, (51)
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l̃Sp 5 5 xvSp 1 cSp

1 1 xvSpcSp

if pp # pS

xV(pp) if pp . pS,

(55)

where V(pp) is the velocity of the shock (see Eq. (50)) separat-
ing states VS and VSp. Note that l̃S $ l̃Sp. Hence, for l̃Sp $ 0
or l̃S # 0, i.e., outside rarefaction waves, the solution of the
Riemann problem at a given interface is given by

V̄ 5HVSp if l̃Sp $ 0

VS if l̃S # 0.
(56)

If l̃S . 0 . l̃Sp holds at an interface, the solution V̄ has to beFIG. 1. Graphical solution in the p-v plane of the Riemann problems
evaluated inside a rarefaction wave (see [17]). In [22] the solu-defined by the initial states VL 5 (pL 5 103, rL 5 1, vL 5 0.5) and Vi

R 5

(pi
R, rR 5 1, vR 5 0) (i 5 1, ..., 4) with p1

R 5 102, p2
R 5 10, p3

R 5 1, p4
R 5 1021. tion inside the rarefaction wave is obtained by interpolating

The adiabatic index of the equation of state is Gd in all cases. Note the asymptotic linearly between the states on both sides of the wave, which
behaviour of the functions when they approach v 5 1. is sufficiently accurate for Newtonian problems. However, in

our relativistic variant of PPM we compute the exact solution.
Finally, the numerical fluxes at each interface are obtainedwhere the enthalpy h(p) of the state behind the shock is the

according to Eq. (42). This concludes the description of our(unique) positive root of the quadractic equation
method, which is of second-order accuracy in space and time.
It can be degraded to a first-order Godunov method by simply

h2S1 1
(c 2 1)(pS 2 p)

cp D2
(c 2 1)(pS 2 p)

cp
(52)

setting aL, j 5 aR, j 5 aj (a 5 p, r, v) in the interpolation step.

4. NUMERICAL TESTSh 1
hS(pS 2 p)

rS
2 h2

S 5 0,

Traditionally, numerical methods for RHD have been testedwhich is obtained from the Taub adiabat (the relativistic version
against two kinds of problems, namely wall shocks and shockof the Hugoniot adiabat) for an ideal gas equation of state.
tubes, giving rise to flows with large Lorentz factors and strongIn Fig. 1, the functions vL

p
(p) and vR

p
(p) are displayed in a

shock waves. Thus, we have simulated these problems withp-v diagram for a particular set of Riemann problems. In the
our relativistic version of PPM, too. In addition, we have calcu-calculations presented here, Eq. (43) is solved for the pressure
lated the more challenging problem of the interaction of discon-pp of the intermediate states by a combination of interval bi-
tinuities, i.e., the relativistic version of the collision of twosection and quadratic interpolation following the procedure
blast waves proposed by Woodward and Colella [22].described in [25]. Once pp has been obtained, the remaining

state quantities can easily be derived [17].
4.1. Shock Heating of a Cold FluidNow we are ready to determine the Riemann solution at a

given interface following a procedure analogous to [26]. Let The initial setup consists of an inflowing cold (i.e., « 5 0)
x 5 2sign(vp), where vp ; vLp(pp) 5 vRp(pp), and set gas with coordinate velocity v1 and Lorentz factor W1, which

fills the computational grid and hits a wall placed at the opposite
edge of the grid. As the gas hits the wall, it is compressed and

S 5HL if x 5 21

R otherwise.
(53) heated up, converting its momentum into internal energy and

giving rise to a shock, which starts to propagate off the wall.
Behind the shock, the gas is at rest (v2 5 0) and has a specificThen, we define
internal energy

«2 5 W1 2 1. (57)l̃S 5 5 xvs 1 cS

1 1 xvScS
if pp # pS

xV(pp if pp . pS

(54)

The compression ratio between shocked and unshocked gas,
h 5 r2/r1, follows fromand
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FIG. 2. Exact (solid line) and numerical profiles of pressure, density, and FIG. 3. Exact (solid line) and numerical profiles of pressure, density, and
flow velocity of a relativistic shock tube (Problem 1; see text). The computationsflow velocity for the shock heating problem with an inflow velocity v1 5

0.99999, when the shock has propagated 50 zones off the wall (at x 5 1). The were performed on an equidistant grid of 400 zones.
computations were performed on an equidistant grid of 100 zones.

wall was placed at x 5 1. For numerical reasons, the specific
internal energy of the inflowing gas was set to a small finite valueh 5

c 1 1
c 2 1

1
c

c 2 1
«2, (58)

(«1 5 1027 W1). Figure 2 shows the profiles of pressure, rest-mass
density and flow velocity for a run with a gas inflow velocity

where c is the adiabatic index of the equation of state. v1 5 0.99999after the shock haspropagated 50 zones off the wall.
This test problem, which sometimes is also formulated as The profiles obtained for other inflow velocities are qualitatively

the collision of two identical gases moving at equal speed similar.Themeanandmaximumerrorsobtained for thecompres-
in opposite directions in order to avoid reflecting boundary sion ratio h are displayed in Table II for a set of inflow velocities.
conditions, has widely been used to check the accuracy of RHD It shows that with our relativistic PPM the mean relative error
codes [5, 8, 9, 12, 14, 15, 27]. Concerning explicit schemes, «r(h) never exceeds a value of 1023 and that, in accordance with
the numerical results improved significantly for this test prob- other codes based on a Riemann solver, the accuracy of our re-
lem, when numerical methods based on Riemann solvers sults does not exhibit any significant dependence on the Lorentz
were introduced. factor of the inflowing gas.

In our test calculations we have used a gas with an adiabatic
4.2. Relativistic Shock Tubesindex c 5 Fd and inflow velocities ranging from nearly Newton-

ian to ultrarelativistic values. The computational grid consisted Shock tubes represent a special class of Riemann problems
of 100 equidistant zones covering the interval x [ [0, 1]. The in which the initial state on both sides of the discontinuity is

at rest. They have become a useful tool in testing numerical
codes, because their evolution involves shock waves and rar-

TABLE II efactions. We have simulated two particular shock tube prob-
Shock Heating of a Cold Gas Moving with a Velocity v1 and a lems characterized by the following initial states:

Lorentz Factor W1
PROBLEM 1.

v1 W1 h «max
r (h) «r(h)

0.5 1.15 7.6188 4.3E 2 02 ,1.3E 2 04
rL 5 10.0, rR 5 1.0

pL 5 13.3, pR 5 0

vL 5 0, vR 5 0.
0.9 2.29 12.1766 5.6E 2 02 6.4E 2 04
0.99 7.09 31.3552 6.9E 2 02 3.9E 2 04
0.999 22.4 92.4651 7.5E 2 02 8.6E 2 04
0.9999 70.7 285.8498 7.6E 2 02 5.9E 2 04 PROBLEM 2.
0.99999 223.6 897.4294 7.7E 2 02 3.4E 2 04

rL 5 1.0, rR 5 1.0
Note. Maximum and mean relative errors of the compression ratio h,

«max
r (h) and «r(h), are given after the shock has propagated 50 zones off the pL 5 103, pR 5 1022

wall. The zone next to the wall, which always dominates the maximum error,
has not been considered when calculating the mean error. vL 5 0, vR 5 0.
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TABLE III

L 2 1 Norm Errors of Conserved Quantities and Convergence Rates
Corresponding to Problem 1 at t 5 0.36 for Relativistic PPM and
Godunov’s Method (Superscript G)

Dx iE(D)i1 iE(S)i1 iE(t)i1 r iE(D)iG
1 rG

gQ; 2.53E 2 01 3.97E 2 01 2.72E 2 01 4.64E 2 01
a!;; 1.43E 2 01 2.54E 2 01 1.67E 2 01 0.82 2.89E 2 01 0.68
s!;; 7.51E 2 02 1.19E 2 01 7.80E 2 02 0.93 1.84E 2 01 0.65
f!;; 3.98E 2 02 5.77E 2 02 3.83E 2 02 0.92 1.14E 2 01 0.69
k!;; 1.94E 2 02 2.96E 2 02 1.93E 2 02 1.04 7.03E 2 02 0.70
ahQ;; 1.03E 2 02 1.96E 2 02 1.28E 2 02 0.91 4.39E 2 02 0.68

Note. iE(a)i1 5 oj Dxj uaj 2 Aju, where Aj is the exact solution at x 5 xj .

In both cases the adiabatic index is c 5 5/3 and the initial FIG. 4. Exact (solid line) and numerical profiles of pressure, density, and
discontinuity is placed at x 5 0.5. flow velocity of a relativistic shock tube (Problem 2; see text). The computations

were performed on an equidistant grid of 400 zones.Problem 1 was chosen because it has been considered by
several authors [5, 6, 14, 15], whose results can directly be
compared with ours. For numerical reasons the pressure of the
right state has been set to a small finite value (pR 5 0.66 3 the L-1 norm error for different grid resolutions, together with
1026). The decay of the initial discontinuity gives rise to an the convergence rate for both the relativistic PPM and the
intermediate state located between a shock wave and a rarefac- relativistic Godunov method.

It is worthwhile to note that in both shock tube problems,tion propagating to the right (i.e., positive x-direction) and left,
the accuracy obtained on the finest grid with the relativisticrespectively. The fluid in the intermediate state moves to the
Godunov variant of our method is already achieved by theright with a velocity vshell 5 0.72. Figure 3 shows the results
relativistic PPM with a four times coarser grid.for a grid of 400 equidistant zones. One recognizes that the

shock is smeared across 4–5 zones and that the largest errors
occur for the postshock density. In Table III the errors of D, 4.3. Collision of Two Relativistic Blast Waves
S, and t are displayed for different grid resolutions using the

The collision of two strong blast waves [23] was used bydiscrete L-1 norm. Refining the grid the convergence rate of the
Woodward and Colella [22] to compare the performance ofsolution (column 5 of Table III) indicates an order of accuracy
several numerical methods (including PPM) in classical hydro-of code of roughly 1, which is expected for problems with
dynamics. In their test calculations the initial condition consistsdiscontinuities and which is in good agreement with the New-
of three constant states of an ideal gas with c 5 1.4. Thetonian version of PPM [22]. This behaviour indicates that the
density is unity and the velocity vanishes everywhere in themain features of the method are retained in our relativistic
interval [0, 1] covered by the grid. Reflecting wall conditionsversion. For comparison, we have also listed in Table III the
are used at x 5 0 and x 5 1. In the left state (x , 0.1) theerrors of the first-order accurate relativistic Godunov variant
pressure p 5 103, while in the right state (x . 0.9) p 5 102

of our method. The corresponding convergence rate is only
0.66 (see Table III).

Problem 2, usually referred to as the propagation of a relativ-
TABLE IVistic blast wave, was first considered by Norman and Winkler

[8]. The flow pattern is similar to that of Problem 1 but some- L 2 1 Norm Errors of Conserved Quantities and Convergence Rates
Corresponding to Problem 2 at t 5 0.36 for Relativistic PPM andwhat more extreme. Relativistic effects reduce the postshock
Godunov’s Method (Superscript G)state to a thin dense shell. The fluid in the shell moves with

vshell 5 0.960, while the shock front ahead of it (the blast wave)
Dx iE(D)i1 iE(S)i1 iE(t)i1 r iE(D)iG

1 rG

propagates with a velocity vS 5 0.986. Norman and Winkler
[8] obtained very good results with an adaptive grid of 400 a!;; 6.18E 2 01 1.09E 1 01 1.10E 1 01 7.06E 2 01

s!;; 4.94E 2 01 6.61E 1 00 6.43E 1 00 0.32 6.38E 2 01 0.15zones using an implicit hydro-code with artificial viscosity.
f!;; 3.21E 2 01 4.25E 1 00 4.10E 1 00 0.62 5.45E 2 01 0.23Figure 4 shows the results obtained with our relativistic PPM
k!;; 1.78E 2 01 2.71E 1 00 2.67E 1 00 0.85 4.63E 2 01 0.24

on a fixed grid of 400 equidistant zones. As in Problem 1, the
ahQ;; 1.00E 2 01 1.83E 1 00 1.89E 1 00 0.83 3.66E 2 01 0.34

largest errors arise in the postshock state. To achieve a con-
Note. iE(a)i1 5 oj Dxj uaj 2 Aj u, where Aj is the exact solution at x 5 xj .verged solution a grid of 2000 zones is required. Table IV gives
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FIG. 5. (1) Exact (solid line) and numerical density profile of the colliding relativistic blast wave problem before the interaction of the waves. The
computations were performed on an equidistant grid of 4000 zones. (2) Same as (1) but showing the flow velocity.

holds. In the central state (0.1 , x , 0.9) the initial pressure interaction occurs later than in the Newtonian problem, namely
at t 5 0.420. For the same reason, the dense shells are thinner,p 5 1022.

The early evolution is characterized by the development of having a width at the time of the collision of Dx 5 0.008
and Dx 5 0.019 for the left and right shells, respectively.two strong blast waves, which propagate into the cold central

gas. These waves are followed by thin shells of dense material. Consequently, the interaction is limited to an extremely narrow
region of size Dx P 0.015. Because of the narrowness of theAt t 5 0.028, the shells collide near x 5 0.69, resulting in a

multiple interaction of strong shocks and rarefactions with each structures one has to use of a very fine grid to resolve the
structures properly. In the calculations presented here we haveother and with contact discontinuities. Much of the wave inter-

action takes place in a narrow region of size Dx 5 0.2. This used a grid of 4000 equidistant zones.
Figure 5 shows the density and velocity profiles of the flowtest is considered as a very severe one, in the sense that it

contains the most challenging ingredients that can appear in prior to the shock collision at time t 5 0.20. The relative error
in the density of the left (right) shell never exceeds 2.0% (0.6%)one-dimensional hydrodynamics, i.e., strong shocks, narrow

structures, and interaction of discontinuities. and has a value of about 1.0% (0.5%) at the moment of shock
collision. The quality of the numerical solution is drasticallyWe have considered the same initial conditions to test our

relativistic code. While in [22] a special version of PPM is degraded when the simulations are performed with the Godunov
variant of our method. At t 5 0.20 the relative errors in theused to produce the most accurate solution for the interaction,

we have relied on the exact solution of the relativistic Riemann density of the left (right) shell are about 50% (16%) and drop
only slightly to a value of about 40% (5%) at the time ofproblem [17] to construct the analytical solution of the inter-

acting blast wave problem. Note that this exact solution is also collision (t 5 0.420).
The collision of the shells produces a region of very highused in our code to calculate the numerical fluxes. Based on the

exact solution of the relativistic Riemann problem, an analytical density bounded by two shocks. The density jump across the
shock propagating to the left (right) is 7.26 (12.06); i.e., thesolution to the blast wave collision problem can be obtained

for epochs prior to interactions with the rarefaction waves. For value lies well above the classical limit for strong shocks (6.0
for c 5 1.4). In Fig. 6 a snapshot of the system is displayedthis reason, we have used outflow boundary conditions at x 5

0 and x 5 1 (to avoid the reflection and subsequent interaction after the interaction has occurred. Compared to Fig. 5 a largely
different scale had to be used in the density plot of Fig. 6 toof the rarefaction waves produced by the initial data) and

stopped our calculations after the interaction of the leading include the narrow dense new states produced by the interaction.
Obviously, our relativistic PPM code satisfactorily resolves theshocks.

The evolution of the system is described in detail in Appendix structure of the collision region, the maximum relative error in
the density distribution being less than 2.0%. Using the Godu-II. The (dimensionless) propagation speed of the two blast

waves is slower than in the Newtonian case, but very close to nov variant of our method, the new states are much more
smeared out and the positions of the leading shocks are wrongthe speed of light (0.9776 and 20.9274 for the shock waves

propagating to the right and left, respectively). Hence, the shock (see Fig. 6).
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FIG. 6. (1) Same as Fig. 5(1) but after the blast wave interaction. Note the change in scale on both axes with respect to Fig. 5(1). (2) Same as Fig. 6(1)
but showing the flow velocity.

5. CONCLUSIONS zone-averaged values aj22, aj21, aj, aj11, and aj12. The expression
for aj11/2 then reads

We have presented and tested an extension to one-dimen-
sional relativistic hydrodynamics of the well-known PPM

aj11/2 5 aj 1
Dxj

Dxj 1 Dxj11
(aj11 2 aj)method of Colella and Woodward [20]. The results obtained

for problems involving ultrarelativistic flows, strong shocks,
and interacting discontinuities and the comparison with Godu-

1
1

o2
k521 Dxj1k

3 H 2Dxj11 Dxj

Dxj 1 Dxj11 (59)
nov’s method demonstrate the superior accuracy and perfor-
mance of our relativistic PPM hydrodynamics code. In the code,
for the first time, an exact relativistic Riemann solver is used

3 F Dxj21 1 Dxj

2Dxj 1 Dxj11
2

Dxj12 1 Dxj11

2Dxj11 1 Dxj
G(aj11 2 aj )to compute the numerical fluxes across zone interfaces. The

modular structure of the code very easily allows the incorpora-
tion of approximate relativistic Riemann solvers, too.

2Dxj
Dxj21 Dxj

2Dxj 1 Dxj11
dmaj11 1 Dxj11

Dxj11 Dxj12

Dxj 1 2Dxj11
dmajJWe also provide the exact solution of the relativistic counter-

part of the collision of two blast waves [22] (see Appendix II).
This solution can be used as a challenging 1D test case to with
calibrate relativistic hydrodynamics codes.

Finally, we mention that the method can be extended in a dmaj 5 min(udaj u, 2uaj 2 aj21u, uaj11 2 aj u)sign (daj ),
straightforward manner to treat also multidimensional relativis- if (aj11 2 aj)(aj 2 aj21) . 0, (60)
tic flows. A particular multidimensional relativistic PPM code, 5 0, otherwise,
based on an approximate relativistic Riemann solver has already
been developed and successfully applied to the simulations of where
relativistic jets [28].

aj 5
Dxj

Dxj21 1 Dxj 1 Dxj11 (61)
APPENDIX I: RECONSTRUCTION PROCEDURE

In this apprendix we give the details of the interpolation
3 F2Dxj21 1 Dxj

Dxj11 1 Dxj
(aj11 2 aj ) 1

Dxj 1 2Dxj11

Dxj21 1 Dxj
(aj 2 aj21)G.procedure used in our relativistic version of PPM. Although

this procedure is identical to that in the original PPM formula-
tion, we will repeat the formulae here for completeness.

Using dmaj, instead of daj, in Eq. (60) guarantees that aj11/2 lies
in the range of values defined by aj and aj11. This calculationStep 1. First, interpolated values of a (where a stands for

any of the quantities p, r, v) are calculated at all zone interfaces yields a value of aj11/2 which is third-order accurate for nonequi-
distant grids, even where the zone size changes discontinu-j 1 As. These interpolated interface values aj11/2 are obtained

using the quartic polynomial uniquely determined by the five ously [20].
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In smooth parts of the flow, away from extrema, the limiting Step 3. Near strong shocks the order of the method is re-
duced locally to avoid spurious postshock oscillations. This isvalues of a at the left and right interface, aL , j ; limxRxj21/2

a(x)
and aR , j ; limxRxj11/2

a(x) are then given by the relation acheived by flattening the distribution inside the corresponding
zones. In these zones the quantities aL , j and aR , j defined above
are substituted byaL , j11 5 aR , j 5 aj11/2. (62)

aflat
L , j 5 aj fj 1 aL , j (1 2 fj ),

(70)
The values of aL , j and aR , j have to be modified later so that
the unique parabola defined by aL , j, aR , j, and aj is a monotone aflat

R , j 5 aj fj 1 aR , j (1 2 fj ).
function in each cell, thereby introducing discontinuities at zone
interfaces (see Step 4). The weight function fj is given by the maximum of f̃j and

f̃j1sj
, whereStep 2. The interpolation procedure described in Step 1 has

to be slightly modified to produce narrower profiles in the
vicinity of a contact discontinuity. This process is called contact f̃j 5 minS1, wj maxS0, Spj11 2 pj21

pj12 2 pj22
2 g(1)Dg(2)DD . (71)

steepening. As suggested in [20], we consider that a jump is
predominantly a contact discontinuity, if the condition

The index sj of f̃j1sj
is either 11 or 21 depending on whether

the difference pj11 2 pj21 is positive or negative. This way zone
cK0

urj11 2 rj21u
min(rj11, rj21)

$
upj11 2 pj21u

min(pj11, pj21)
(63)

j 1 sj is always the next zone upstream of zone j, if the latter
is in a shock.

In Eq. (71), the quotient (pj11 2 pj21)/(pj12 2 pj22) is aholds, where K0 is a constant. In all zones j satisfying (63) the
measure of the steepness of the pressure jump across the zonedensity distribution is steepened by modifying the values aL , j

j, g(1) and g(2) are constants, and wj is equal to 1, if the zoneand aR , j according to
is inside a shock and zero otherwise. The criterion for a zone
being inside a shock isaL , j R aL , j(1 2 hj) 1 ad

L , j hj,
(64)aR , j R aR , j(1 2 hj) 1 ad

R , j hj

upj11 2 pj21u
min (pj11, pj21)

. «(2), vj21 . vj11. (72)
with

Step 4. Now we are ready to describe the monotonization
ad

L , j 5 aj21 1
dmaj21

2
, ad

R , j 5 aj11 2
dmaj11

2
, (65) step (see Eq. (1.10) of [20]). In smooth parts of the flow, away

from extrema, aL , j11 5 aR , j 5 aj11/2, so that the interpolation
is continuous at xj11/2. However, near discontinuities the valuesand
of aL , j and aR , j obtained in Step 1 to 3 are modified such that
in each zone j the interpolation parabola is a monotone function,hj 5 max[0, min(h(1)(h̃j 2 h(2)), 1)]. (66)
which takes on only values between aL,j and aR,j . According to
[20] the following modifications are necessary:In this last expression, h(1) and h(2) are free parameters, while

h̃j is defined as
aL , j R aj, aR , j R aj if (aR , j 2 aj )(aj 2 aL , j ) # 0 (73)

aL , j R 3aj 2 2aR , j if (aR , j 2 aL , j )
h̃j 5 2 Sd 2aj11 2 d 2aj21

xj11 2 xj21
D S(xj 2 xj21)3 1 (xj11 2 xj )3

aj11 2 aj21
D ,

3 Saj 2
aL , j 1 aR , j

2 D.
(aR , j 2 aL , j )2

6
(74)

if 2 d 2aj11 · d 2aj21 . 0, uaj11 2 aj21u (67)

2 «(1) min(uaj11u, uaj21u) . 0

(68)

aR , j R 3aj 2 2aL , j if 2 (aR , j 2 aL , j )

5 0, otherwise,
3 Saj 2

aL , j 1 aR , j

2 D.
(aR , j 2 aL , j )2

6
. (75)

where

Note that in RHD the monotonic character of the reconstruction
algorithmm ensures that the interpolated interface velocitiesd 2aj 5

1
Dxj21 1 Dxj 1 Dxj11

(69)
are always smaller than the speed of light, if this holds for the
zone averaged values, too.

3 F aj11 2 aj

Dxj11 1 Dxj
2

aj 2 aj21

Dxj 1 Dxj21
G .

The parameters K0, h(1), h(2), and «(1), introduced in Step 2,
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TABLE V

Values of the Reconstruction Parameters Used in the Calculations

K0 h(1) h(2) «(1) g(1) g(2) «(2)

1.0 5.0 0.05 0.1 0.52 10.0 1.0

and g(1), g(2), and «(2) introduced in Step 3 are, in principle,
problem dependent; i.e., their values have to be fixed for every
calculation. Although the quality of the results depends on the
values of these parameters, a set of values can be found, how-
ever, which is well suited for a wide range of problems. The
parameter values used in all our test calculations are given in
Table V.

FIG. 7. Flow pattern of the colliding relativistic blast wave problem before
the interaction of the waves. The values of the hydrodynamical quantities in
the regions R1 to R9, which characterize the flow, are given in Table VI. TheyAPPENDIX II: EXACT SOLUTION FOR THE COLLISION
have been computed using the formulae of Appendix II.OF TWO RELATIVISTIC BLAST WAVES

In this appendix we describe the exact solution to the problem
and x2 are the positions of the head and tail of the rarefactionof the collision of relativistic blast waves for the initial data
wave in region R2. They move according togiven in Section 4.3. The problem of the collision of two blast

waves was introduced in classical hydrodynamics by Wood-
x1(t) 5 0.1 2 0.6324t (76)ward and Colella [22] to test the accuracy and performance

of various finite difference methods in case of a challenging x2(t) 5 0.1 1 0.8222t. (77)
numerical problem. The multiple interactions of discontinuities
and rarefactions together with the resulting narrow flow struc- Inside R2, i.e., x1(t) , x , x2(t), the distribution of the hydrody-
tures make this problem an extremely difficult test case for any namical quantities can be obtained in two steps. First, one
Eulerian method. In its relativistic version, we have changed solves the algebraic system of equations for the sound and flow
the boundary conditions, however (from reflecting to outflow), velocity given by
to avoid the reflection and subsequent interaction of rarefaction
waves. Thus, the flow structure is less complicated than in the

c2(x, t) 5
v2(x, t) 2 (x 2 0.1)/t
1 2 v2(x, t)(x 2 0.1)/t

(78)Newtonian case. However, due to relativistic effects narrower
structures and larger jumps occur in the flow.

Early on, the flow consists of two blast waves created by
v2(x, t) 5

(1 1 v1)A1(x, t) 2 (1 2 v1)

(1 1 v1)A1(x, t) 1 (1 2 v1)
, (79)the decay of the initial discontinuities at x 5 0.1 and x 5 0.9.

The two waves propagate towards each other and collide at
t 5 0.4200. We have used the procedure described in [17] to
solve the Riemann problems at x 5 0.1 and x 5 0.9 which
determine the solution before the collision. Up to this stage, TABLE VI
the solution consists of nine different regions (R1 to R9; see

Constant States of the Relativistic Blast Wave Collision Problem
Fig. 7) linked at points x1 to x8, where xi is the position of the
interface between regions Ri and R(i 1 1). Regions R1, R5, Region p r v c
and R9 correspond to the initial states, whereas regions R3 and

R1 1.000E 1 03 1.000E 1 00 0.00E 1 00 6.323E 2 01R4 as well as regions R6 and R7 are the intermediate states of
R3 1.471E 1 01 4.910E 2 02 9.57E 2 01 6.321E 2 01the Riemann problem defined by the initial discontinuity at x 5
R4 1.471E 1 01 1.439E 1 01 9.57E 2 01 5.591E 2 01

0.1 and x 5 0.9, respectively. The values of the hydrodynamical R5 1.000E 2 02 1.000E 1 00 0.00E 1 00 1.163E 2 01
quantities in these constant states are given in Table VI. Finally, R6 4.639E 1 00 9.720E 1 00 28.82E 2 01 5.002E 2 01

R7 4.639E 1 00 1.120E 2 01 28.82E 2 01 6.303E 2 01regions R2 and R8 are rarefaction waves.
R9 1.000E 1 02 1.000E 1 00 0.00E 1 00 6.316E 2 01Besides the values of the hydrodynamical quantities in the

constant states, the complete analytical solution must also give
C1 3.698E 1 02 1.044E 1 02 4.56E 2 01 6.084E 2 01

the position of the points xi (i 5 1, ... , 8) as a function of time, C2 3.698E 1 02 1.173E 1 02 4.56E 2 01 6.056E 2 01
and the flow quantities inside the rarefaction waves. Points x1
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FIG. 8. (1) Sequence of snapshots showing the evolution of the density profile of the colliding relativistic blast wave problem up to the moment, when
the interaction of the waves occurs. The profiles have been computed using the formulae of Appendix II. (2) Same as Fig. 8(1) but showing the flow velocity.

where x7 and x8. The positions of all these points as a function of time
are given by

A1(x, t) 5 SÏc 2 1 2 c2(x, t)Ïc 2 1 1 c1

Ïc 2 1 1 c2(x, t)Ïc 2 1 2 c1

D2/Ïc21

. (80)
x5(t) 5 0.9 2 0.9274t (85)

x6(t) 5 0.9 2 0.8820t (86)Then, the isentropic character of the flow inside the rarefaction
can be used to get the density and pressure profiles through x7(t) 5 0.9 2 0.5668t (87)

x8(t) 5 0.9 1 0.6315t. (88)
r2(x, t) 5 Sc2

2(x, t)(c2
1 2 c 1 1)

c2
1(c2

2(x, t) 2 c 1 1)D1/(c 2 1)

r1 (81)

Inside the rarefaction on the right, i.e., for x7(t) # x # x8(t),
the solution of the following algebraic system of equationsand

p2(x, t) 5 Sr2(x, t)
r1

Dc

p1. (82) c8(x, t) 5 2
v8(x, t) 2 (x 2 0.9)/t
1 2 v8(x, t)(x 2 0.9)/t

(89)

Point x3 is the locus of a contact discontinuity. Hence, it moves v8(x, t) 5
(1 1 v9)A2(x, t) 2 (1 2 v9)
(1 1 v9)A2(x, t) 1 (1 2 v9)

(90)
with the velocity of the fluid in regions R3 and R4, i.e.,

(83)x3(t) 5 0.1 1 0.9570t. with

Point x4, finally, gives the position of the shock heading the
left blast wave propagating towards the right; i.e., its motion

A2(x, t) 5 SÏc 2 1 2 c8(x, t)

Ïc 2 1 1 c8(x, t)

Ïc 2 1 1 c9

Ïc 2 1 2 c9

D22/Ïc21

(91)is governed by

(84)x4(t) 5 0.1 1 0.9776t,
gives the sound and fluid velocity. Then, Eqs. (81) and (82)
allow one to calculate r8(x, t) and p8(x, t), if the indices 1 andwhere the shock speed has been calculated from the Rankine–

Hugoniot conditions for the jump between states R4 and R5. 2 are substituted by 9 and 8, respectively.
Figure 8 shows four snapshots of the evolution of the flow,The blast wave on the right has a similar structure, with a

heading shock at x5 propagating into the central initial state, a including the moment of the collision of the blast waves at
t 5 0.4200. At this moment, the collision (of regions R4 andcontact discontinuity at x6 separating regions R6 and R7, and

a rarefaction wave propagating to the right bounded by points R6) occurs at x 5 0.5106, giving rise to two new states C1
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