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An extension to 1D relativistic hydrodynamics of the piecewise
parabolic method (PPM) of Colella and Woodward using an exact
relativistic Riemann solver is presented. Results of several tests
involving ultrarelativistic flows, strong shocks and interacting dis-
continuities are shown. A comparison with Godunov’s method dem-
onstrates that the main features of PPM are retained in our relativis-
tic version. © 1996 Academic Press, Inc.

1. INTRODUCTION

Relativistic hydrodynamics (RHD here after) plays an im-
portant role in different fields of physics, e.g., in astrophysics,
cosmology, and nuclear physics. In extragal actic jets emanating
from core dominated radio sources associated with active galac-
tic nuclei [1] or in current laboratory heavy-ion reactions [2]
even ultrarelativistic flows are encountered. The necessity of
modeling such relativistic flows which also involve strong
shocksistriggering the devel opment of relativistic hydro-codes.

The first code to solve the RHD equations on an Eulerian
grid was developed by Wilson [3, 4] and collaborators [5, 6].
The code is based on explicit finite differencing techniques and
uses amonotonic transport algorithm to discretize the advection
terms of the RHD eguations. The stabilization of the code
across shocks is accomplished by means of a von Neumann
and Richtmyer [7] artificial viscosity. Thiscode hasbeenwidely
used in numerical cosmology, axisymmetric relativistic stellar
collapse, accretion onto compact objects, and, more recently,
in collisions of heavy ions. The code’s acccuracy decreases as
the flow becomes strongly relativistic (flow Lorentz factor,
W > 2; see [5]).

Norman and Winkler [8] proposed a fully implicit treatment
of the equations in order to overcome the numerical problems
in the ultrarelativistic limit (W > 1). Recently, severa new
methods for numerical RHD have appeared [9—15] which with
the exception of [11] (smoothed particle hydrodynamics) and
[10] (flux-corrected transport method for the equations of rela-
tivistic magnetohydrodynamics) are based on the conservation
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form of the RHD equations. One advantage of this approach
is the possibility of using numerical techniques specially de-
signed to solve nonlinear hyperbolic systems of conservation
laws [9]. In fact, the codes described in Refs. [9, 12, 15] and
the code HL L E of [ 14] are based on Godunov-type methods and
an implementation of different approximate Riemann solvers
(readerslacking knowledge of Godunov-type methods and Rie-
mann solvers should consult, e.g., the recent book of LeVeque
[16]). Judging from theresults of several test cal culations shown
inthese references, it can be concluded that an accurate descrip-
tion of ultrarelativistic flows with strong shock waves can be
accomplished by writing the system of RHD in conservation
form and using Riemann solvers.

In arecent paper [17] we have derived the exact solution of
the Riemann problem for ideal gasesin relativistic hydrodynam-
ics. Similarly to the classical (Newtonian) case, the solution
can be obtained by solving animplicit algebrai c equation which
determines the pressure in the intermediate states that develop
after breakup of the initial discontinuity. Our solution extends
previously known particular solutions (i.e.,, [18, 19]) to the
general case of two arbitrary initia states. It can be used to
construct an exact Riemann solver and allows one to formulate
arelativigtic version of Godunov’s method.

On the other hand, the piecewise parabolic method ([20],
PPM hereafter), is awell-known higher-order extension of Go-
dunov’s method being used extensively in classical hydrody-
namics. Besides the use of an exact Riemann solver, the key
ingredients responsible for the accuracy of PPM are a parabolic
interpolation of variables inside numerical cells and special
monotonicity constraints and discontinuity steepeners to keep
discontinuities sharp and free of numerical oscillations. Finally,
solving Riemann problems for states averaged over the domain
of dependence of the interfaces makes PPM second-order accu-
rate in time. In this paper, we present an extension of PPM in
its direct Eulerian version to one-dimensional RHD, in which
all the key ingredients of PPM have properly been generalized.

The paper is organized as follows. In Section 2 we define
the RHD equationsin an Eulerian reference frame in conserva-
tion form and describe the transformation of quantities from
the Eulerian frameto the rest (proper) frame of afluid element.
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Thistransformationisakey ingredient in our algorithm. Section
3 is devoted to a description of the reconstruction procedure,
the determination of effective second-order-accurate (in time)
left and right states defining the Riemann problems and the
calculation of the numerical fluxes using an exact relativistic
Riemann solver. Several numerical test calculations including
the RHD generaization of the interaction of two blast waves
[22] are presented in Section 4. In Appendix I, the explicit
formulae used in the interpolation step are given. Finaly, the
analytical solution corresponding to the problem of the interac-
tion of two relativistic blast waves introduced in Section 4 is
described in Appendix 1.

2. THE EQUATIONS OF RELATIVISTIC
HYDRODYNAMICS

In an Eulerian reference frame, the equations of RHD of a
perfect fluid in one spatial (Cartesian) coordinate x can be
written in conservation form as

oD  oDv
ot ax © @
S, A +p) _, @
ot oX
ﬂ'+ d(S—Dv) _ 0, 3)
ot oX

where D, S and 7 are the rest-mass density, the momentum
density, and the energy density in a fixed frame, respectively.
These variables are related to quantities in the local rest frame
of the fluid through

D= pW 4
S= phw (5)
7= phW? — p—D, (6)

where p, p, v, W, and h are the proper rest-mass density, the
pressure, the fluid velocity, the fluid Lorentz factor, and the
specific enthalpy, respectively. The latter two quantities are
given by

W= (7)

and
h=1+e+"> ®)
p

where ¢ isthe specific internal energy. Note that in the previous

equations and throughout the whole paper the speed of light is
set equal to unity.

From Egs. (4)—(6) the following relation between p, v, and
the conserved quantities can easily be derived:

S
T riD+ p ©
In the non-relativistic limit (v —- 0, h — 1) D, S and 7
approach their Newtonian counterparts, p, pv, and pE = pe +
pv?/2, and Egs. (1)—(3) reduce to the classical ones,

9 _ (10)
ot aX
2
v AT P) _ (11)
ot 1.4
9PE [ WETD) _ (12)
ot X

The system of Egs. (1)—(3) with definitions (4)—(8) is closed
by means of an equation of state (EOS), which we shall assume
as given in the form

p = p(p, 2). (13)

In order to use the exact solution of the relativistic Riemann

problem derived in [17] we restrict ourselves to an ideal gas
EOCS, i.e,

p=(y — Dpe, (14)

where v is the adiabatic index. A very important quantity de-

rived from the EOS is the local sound velocity ¢, which in our
case is defined through

=1 (15)

ph

In any RHD code evolving the conserved quantities {D, S

7} intime, the variables {p, p, &, v} have to be computed from

the conserved quantities at least once per time step. In our

approach, like in Refs. [9, 12], thisis achieved using relations
(4)—(8) and (14) to construct the function

f(p) = (v — Dpses — P (16)
with p,. and &, given by
D
P = W* (17)

and
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_ 7+ D(L— W) + p( — W3)

DW, (18)

Ex

respective, where

B 1
AV 7+ D +p)y (19)

The zero of f(p) in the physically allowed domain p € ]pwin,
o[ determines the pressure, the monotonicity of f(p) in that
domain ensuring the uniqueness of the solution. The lower
bound of the physicaly alowed domain, p,, defined by

Prin = |§ — 7 — D, (20)
is obtained from (9) by taking into account that (in our units)
lv| = 1. Knowing p, Eq. (9) then directly gives v, while the
remaining state quantities are straightforwardly obtained from
Egs. (4)—(8).

3. A RELATIVISTIC VERSION OF PPM

Equations (1)—(3) can be written in the form

u FW) _ 1)
ot 1104

with

u=(D,S ) (22)

and

F=(Dv,S +p, S— Dv)". (23)
In order to solve system (21) we consider the conservative
difference scheme

At - =
urtl = un + B({Fj—uz — Fjaa, 24

where uf' and ul"** are the zone-averaged values of the state
vector u of zone j at timest = t"and t = " = t" + At,
respectively. Fj., arethe time-averaged numerical fluxesat the
right and left interfaces of zonej. In a Godunov-type difference
scheme appropriate left and right states are constructed from
the zone-averaged values, which are then used to calculate the
numerical fluxes IA:,-H,2 by solving the corresponding Riemann
problem.

In the remainder of this section we discuss in detail how the
numerical fluxes are calculated in our relativistic version of
PPM. First, we describe the interpolation procedure used to
reconstruct the variables inside zones from zone-averaged val-

ues. Then, we concentrate on the construction of left and right
interface states averaged over the domain of dependence of
each interface, which are used asinitial states for the Riemann
problem to be solved at each interface. Finally, we discuss the
solution of the relativistic Riemann problem and the computa-
tion of the numerical fluxes.

3.1. Interpolation Procedure

In our relativistic version of PPM the interpolation algorithm
described in the original paper by Colella and Woodward [20]
is applied to zone-averaged values of V = (p, p, v), which are
obtained from zone averaged values of the conserved quanti-
ties u;.

Interpolating in V instead of, for example, in u has severa
advantages. Firgt, in this case the solution of Eq. (16), which
involves an iteration, has to be computed only once per zone
per time step, and second, one can easily avoid the occurrence
of unphysical values (i.e., larger than the speed of light) for
the interpolated flow velocity. Third, interpolating in p and
p simplifies the implementation of the contact discontinuity
detector (see Appendix I).

Like in the Newtonian version of PPM, we determine for
each zone j the quartic polynomia which has zone-averaged
values g_, 81, 8, 8.1, 8. to interpolate the structure inside
the zone, where a is one of the quantities p, p, or v. Using this
quartic polynomia values of a at the left and right interfaces
of the zones, a_; and ag;, are obtained. These reconstructed
values are then modified such that the parabolic profile, which
is uniquely determined by &, ;, ag;, and &, is monotonic inside
the zone (monotonization). Finally, the interpolation procedure
is dightly modified near discontinuities to produce narrower
jumps (see Appendix 1).

3.2. Construction of Effective Left and Right States

To obtaintime-averaged fluxesat aninterfacej + 3 separating
zones j and j + 1, in PPM two spatially averaged states,
Vi:2s (S= L, R where L and R denote the |eft and right sides
of the interface, respectively), are constructed, which take into
account the characteristic information reaching the interface
from both sides during the time step.

In the Lagrangian version of PPM this implies to calculate
the average of V over the domain of dependence of each inter-
face. In its direct Eulerian version, however, the construction
of the effective states is more complicated, because the number
of characteristics reaching the interface of a zone from a given
side can vary from zero to three. In afirst step, one computes
the average over that part of the domain of dependence of each
interface, which lies to the left and right of the interface. The
initial guess is then corrected by subtracting that amount of
each characteristic which will not reach the interface during
the time step (see Fig. 5 in [20]).

In our relativistic version of PPM the correction of the initial
guessisobtained by closely following the procedurein [20], but
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TABLE |
Spectral Decomposition of Matrix A

Eigenvalues Left eigenvectors Right eigenvectors
—v-¢ 1 1 W2
A= =(0z= - (=P 1 _hwe
1— e I <O, > 2phW2C> r- < c 1, —phw c>
AN =0 I0:<1,O,fhicz> ro=(10,0)
—vtce (a1 _ 1 _(pwe
L s I+_<0'2'2ph\/\/20> rA—< c ,1,ph\AFc>

Note. Left and right eigenvectors have been chosen such that I;-ry = Sy
#H# =—,0 +.

considering the characteristic speeds and Riemann invariants of
the equations of relativistic instead of Newtonian hydrodynam-
ics. We rewrite system (21) in terms of V in characteristic
form as

oV Vv

T A=, (25)
ot aX
where matrix A is defined as
v P —Y
1-v%® hwyl-v%?
B v(l—c? 1
A= 1- 0% phWi(1 — v’ (26)
phc? v(l—¢c)
1-0v%c? 1-—0v%c?

Note that the local sound speed, ¢, defined in (15) has explicitly
been introduced in matrix A, whose eigenvalues A, (# € {—,
0, +}) and corresponding left and right eigenvectors | and r
aregivenin Tablel. In analogy with [20] the effective left and
right states, V.15 (S = L, R), are then found to be

Bi+12s = Pi+uzs T Chuzs(Biuas + B9 (27)

(29)

Vj+128 = 5j+1/z,s + Cj+l/2,S(:Bj++l/2,S - ,3,-11/2,3)

Pij+12s = 5j+1/2,s + Ru/z,s(/gjtrl/zs - ,310+1/z,s + leuz,s) (29)
with

Bj#u/z,L =0
Bj#+1/2,R =0

if A, (V) =0 (30)

if A(V.) =0 (31)

and

. 1 ~ . . Bir12s — pj:lllz,s
,31+1/z,s =+~ \Vpwes — Vjries =~ =~ (32)

j+1/2,S Cj+1/2,$

~ _ 0 _ 0
0 _ Pi+u2s — Pi+izs ﬁ]ﬂ/z,s Pi+12s
,31+1/z,s— = -

Ru/z,s

(33)

2
c j+1/2,5

otherwise.

The quantities&.1,s(S= L, R, a € {p p, v}) arethe averages
of a over that part of the domain of dependence of the
#-characteristic, which lies to the left (right) of the respective
interface. They are calculated using the (monotonized) parabo-
lae determined for a in the interpolation step; i.e.,

X 2
&apL=ar;— 5 [aR,j —a,;—6 (l - —X>

2 3
(34)
o-22)
q 2 1
where
0, AtA(V;
X = max( (V) (35)
Xi+12 = X-12
and
X 2
A&ipr = a1t > |:aR,j+1 —a, 116 <1 — §X>
(36)
At &in
dj+1 —2 ,
where
0, —AtAl(V,
X = max( #( 1+1)). 37)

Xi+32 = X+112

Note that we have defined x in Egs. (35) and (37), and hence
al12s, Slightly different from Colellaand Woodward ([20]; see
their Eg. (3.5)). However, the resulting 3%.1/,s, the only quanti-
ties depending on &,,,,s, are identica to those of [20], because
they have to fulfill Egs. (30) and (31). With our modified
definition of &.1,,s, the quantities &, s appearing in Egs. (27)
to (33) are then ssimply given by

(38)

aﬂ/z,l_ = &1L

(39)

51' +12R = Qj+1/2R-

Finally, the quantities EZ,-H,ZS and IE%,-H/ZS are defined according to

—_~ ~ ~ 2 ~
Ciws= Pj+1/2,Shj+1/2,SWj+1/2,SQ+1/2,S

(40)



PPM METHOD FOR 1D RELATIVISTIC HYDRODYNAMICS 5

(41)

r?,'u/z,s = f’j2+1/2,sﬁj+1/2,s\7vf‘+1/2,s
Nis12s, \7\/j+1/2,s, and T,ys being given as functions of H.1zs,
Bi+u2s and Oj1y05 (Se€ Egs. (8), (7), and (15), respectively).

It is worthwhile to note that the Newtonian limits of
Bit12s and G155 coincide with the corresponding coefficients
in Eq. (3.7) of [20]. However, the limit of B,,s differs from
its Newtonian counterpart, because contrary to [20] we have
used the density instead of the specific volume as a variable
for the characteristic equations.

3.3. Solution of the Riemann Problem and Computation of
the Numerical Fluxes

In Godunov’s approach the numerical fluxes IA:,~+1/2 are calcu-
lated according to

Fj+1/2 = F(Uj+1/2)1 (42)
where Uj. 4, is an approximation to (1/At) f u(X12, t) dt, i.e,
the time-averaged value of the solution at .1, which is ob-
tained solving the Riemann problem at X;.,,, with left and right
states V.12 and Vg, respectively.

In arecent paper [17] we have shown that an exact solution
of a Riemann problem for a polytropic gas in RHD can be
obtained, in complete anal ogy to the Newtonian case, by solving
a non-linear algebraic eguation.

Both in relativistic and Newtonian hydrodynamics the dis-
continuity between the two constant initial states V| and Vg
decaysinto two elementary nonlinear waves (shocks or rarefac-
tions), one moving towards the initia left state and the other
towards the initia right state. Between the waves two new
states V... and V. appear, which are separated from each other
through a contact discontinuity moving along with the fluid.
Across the contact discontinuity, pressure and velocity are con-
tinuous, while the density exhibits a jump. As in classical
hydrodynamics [24] the self-similar character of the flow
through rarefaction waves and the Rankine—Hugoniot condi-
tions across shocks provide the conditionsto link the intermedi-
ate states Vs, (S = L, R) with their corresponding initial state
V. In particular, one can express the velocity of the intermedi-
ate states vs, as a function of the pressure ps. of these states.
The smoothness of the velacity across the contact discontinuity
then gives

vL(Ps) = Ur(Ps), (43)
where p,, = p.. = pr.. Thisis the above mentioned non-linear
agebraic eguation to be solved at each interface in each time
step. The functions vs.(p) are defined by

EA®)
vsp) = $Yp)

ifp=ps

a4
if p> ps, (44)

where R(p) (¥¥(p)) denotes the family of all states which can
be connected through a rarefaction (shock) with a given state
S ahead of the wave (for more details see [17]). Because the
Riemann invariants

1 1+v c
= — _ *+ —
. 2'”(1—u>—fpdp

are constant through rarefaction waves propagating to the left
(J;) or right (J-), one can derive

(45)

the expression

_ (1 +vdA(p) —(1— vy

TP gamra-vy
with
_(My—i-cp)Vy -1+ %)ﬂW
Mo (e @

the + (=) sign of A. correspondingto S= L (S= R). In Eq.
(47), csis the sound speed of the state S, and c(p) is given by

y(y — 1p )“2
(v — Dpsplpd™” +yp)

o - ( (49

The family of all states $p), which can be connected
through a shock with a given state S ahead of the wave, is
determined by the shock jump conditions. One obtains (see

[17])

P— Ps
g :<h5W Si—)
s VT o7
1 Us -1
hWs + (p — s( x - )} ,
[ Y AT

(49)

where the + (=) sign correspondsto S= R (S = L). V.(p)
and j (p) denote the shock velocity and the modulus of the
mass flux acrossthe shock front, respectively. They are given by

pAWs | (p)*V1 + (pdi (P))?
PAWE + j (p)?

V.(p) = (50)

and

(51)

oy B h%—h(p)2_2_hs>
i(p) \/(ps p)/(—ps_p o)
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FIG. 1. Graphical solution in the p-v plane of the Riemann problems
defined by the initial states V|, = (p. = 10°, p. = 1, v, = 0.5) and Vi =
(prypr=Lvg=0) (i =1, ..., 4) withpt = 10%, p3 = 10, p3 = 1, pt = 10~
The adiabatic index of the equation of stateis$ in all cases. Note the asymptotic
behaviour of the functions when they approach v = 1.

where the enthalpy h(p) of the state behind the shock is the
(unique) positive root of the quadractic equation

h2<1 L= D(ps — p)) _(y=1(ps—p)
P P (52)
L N(ps — p) Che—o,
Ps

whichis obtained from the Taub adiabat (therelativistic version
of the Hugoniot adiabat) for an ideal gas equation of state.

In Fig. 1, the functions v, (p) and vg (p) are displayed in a
p-v diagram for a particular set of Riemann problems. In the
calculations presented here, Eq. (43) is solved for the pressure
ps of the intermediate states by a combination of interval bi-
section and quadratic interpolation following the procedure
described in [25]. Once p,. has been obtained, the remaining
state quantities can easily be derived [17].

Now we are ready to determine the Riemann solution at a
given interface following a procedure analogous to [26]. Let

x = —sign(vy), where vy, = vi.(ps) = Ur(Ps), and set
L ify=-1
= 53
{R otherwise. 3)
Then, we define
XUst Cs .
- L ifpy=
A= {1+ xvocs PP (54)
XV(ps i pye>ps

and

XUs t+ Cse .
~ S ifp. =
T =41+ yvsce | PET (55)
XV(p+) if ps > ps,

where V(p.,) is the velocity of the shock (see Eq. (50)) separat-
|ng states Vs and V.. Note that As = As.. Hence, for As, = 0
or As = 0, i.e., outside rarefaction waves, the solution of the
Riemann problem at a given interface is given by

AV
V =
Vs

If As> 0 > A, holds at an interface, the solution V has to be
evaluated inside ararefaction wave (see [17]). In [22] the solu-
tion inside the rarefaction wave is obtained by interpolating
linearly between the states on both sides of the wave, which
is sufficiently accurate for Newtonian problems. However, in
our relativistic variant of PPM we compute the exact solution.

Finaly, the numerical fluxes at each interface are obtained
according to Eq. (42). This concludes the description of our
method, which is of second-order accuracy in space and time.
It can be degraded to a first-order Godunov method by simply
setting a,; = ag; = & (a = p, p, v) in the interpolation step.

if Ae =0

~ 56
if As=0. (56)

4. NUMERICAL TESTS

Traditionally, numerical methods for RHD have been tested
against two kinds of problems, namely wall shocks and shock
tubes, giving riseto flows with large L orentz factors and strong
shock waves. Thus, we have simulated these problems with
our relativistic version of PPM, too. In addition, we have cal cu-
lated the more challenging problem of the interaction of discon-
tinuities, i.e., the relativistic version of the collision of two
blast waves proposed by Woodward and Colella [22].

4.1. Shock Heating of a Cold Fluid

The initial setup consists of an inflowing cold (i.e., ¢ = Q)
gas with coordinate velocity v, and Lorentz factor W;, which
fillsthe computational grid and hitsawall placed at the opposite
edge of the grid. As the gas hits the wall, it is compressed and
heated up, converting its momentum into internal energy and
giving rise to a shock, which starts to propagate off the wall.
Behind the shock, the gasis at rest (v, = 0) and has a specific
internal energy

=W - 1. (57)

The compression ratio between shocked and unshocked gas,
n = pal p, follows from



PPM METHOD FOR 1D RELATIVISTIC HYDRODYNAMICS 7

1.0 —

L . p/10¥*3

L p/10**5 ]
05— |

L N . |
0.0 2

‘ [ S S N BRI
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. Exact (solid line) and numerical profiles of pressure, density, and
flow velocity for the shock heating problem with an inflow velocity v, =
0.99999, when the shock has propagated 50 zones off the wall (at x = 1). The
computations were performed on an equidistant grid of 100 zones.

n:%ierlez, (58)
where v is the adiabatic index of the equation of state.

This test problem, which sometimes is also formulated as
the collision of two identical gases moving at equal speed
in opposite directions in order to avoid reflecting boundary
conditions, haswidely been used to check the accuracy of RHD
codes [5, 8, 9, 12, 14, 15, 27]. Concerning explicit schemes,
the numerical results improved significantly for this test prob-
lem, when numerica methods based on Riemann solvers
were introduced.

In our test calculations we have used a gas with an adiabatic
index v = § and inflow velocities ranging from nearly Newton-
ian to ultrarelativistic values. The computational grid consisted
of 100 equidistant zones covering the interval x € [0, 1]. The

TABLE Il

Shock Heating of a Cold Gas Moving with a Velocity v, and a
Lorentz Factor W,

v W, n &™(n) &(n)
05 115 7.6188 43E — 02 <13E - 04
0.9 2.29 12.1766 5.6E — 02 6.4E — 04
0.99 7.09 31.3552 6.9E — 02 39E - 04
0.999 224 92.4651 7.5E — 02 8.6E — 04
0.9999 70.7 285.8498 7.6 — 02 59E — 04
0.99999 2236 897.4294 7.7E — 02 34E — 04

Note. Maximum and mean relative errors of the compression ratio 7,
&™(n) and g,(n), are given after the shock has propagated 50 zones off the
wall. The zone next to the wall, which always dominates the maximum error,
has not been considered when calculating the mean error.

T
p/10 )
1.0 _
. p/20 |
05 - - |
[ v
0.0
I | ' L L | | ' L | L | I | L L L
0.0 0.2 0.4 0.6 0.8 1.0

X

FIG. 3. Exact (solid line) and numerical profiles of pressure, density, and
flow velocity of arelativistic shock tube (Problem 1; seetext). The computations
were performed on an equidistant grid of 400 zones.

wall was placed at x = 1. For numerical reasons, the specific
internal energy of theinflowing gaswasset to asmall finitevalue
(g1 = 10""W,). Figure 2 showsthe profilesof pressure, rest-mass
density and flow velocity for a run with a gas inflow velocity
v, = 0.99999 after the shock haspropagated 50 zonesoff thewall.
Theprofiles obtained for other inflow velocitiesare qualitatively
similar. Themeanand maximumerrorsobtai ned for thecompres-
sionratio naredisplayedin Tablell for aset of inflow velocities.
It shows that with our relativistic PPM the mean relative error
&,(n) never exceeds avalue of 102 and that, in accordance with
other codes based on a Riemann solver, the accuracy of our re-
sults does not exhibit any significant dependence on the Lorentz
factor of theinflowing gas.

4.2. Relativistic Shock Tubes

Shock tubes represent a special class of Riemann problems
in which the initial state on both sides of the discontinuity is
at rest. They have become a useful tool in testing numerical
codes, because their evolution involves shock waves and rar-
efactions. We have simulated two particular shock tube prob-
lems characterized by the following initial states:

ProBLEM 1.
pL= 100, PrR = 1.0
pL = 133, pR =0
U= O, Ur = 0.
ProBLEM 2.

pL= 10, PR = 10
p|_ = 103, pR = 1072

ULZO, URZO.
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TABLE 111

L — 1 Norm Errors of Conserved Quantities and Convergence Rates
Corresponding to Problem 1 at t = 0.36 for Relativistic PPM and
Godunov's Method (Superscript G)

Ax  [ED)L IES)Il [EI: r [ED)I re
% 253E—-01 397E-01 272E-01 4.64E — 01

o 143E - 01 254E—- 01 167E—01 082 289 — 01 0.68
# 751E—02 119E — 01 7.80E — 02 0.93 184E— 01 065
m 398E - 02 577E—02 3.83E —02 092 114E-01 0.69
@ 194E — 02 296E — 02 1.93E — 02 1.04 7.03E — 02 0.70
o 103E— 02 196E — 02 1.28E— 02 091 4.39E — 02 068

Note. [E(@)|; = =; Ax|a — A, where A is the exact solution at X = X.

In both cases the adiabatic index is y = 5/3 and the initial
discontinuity is placed at x = 0.5.

Problem 1 was chosen because it has been considered by
several authors [5, 6, 14, 15], whose results can directly be
compared with ours. For numerical reasons the pressure of the
right state has been set to a small finite value (pg = 0.66 X
107%). The decay of the initial discontinuity gives rise to an
intermediate state located between a shock wave and a rarefac-
tion propagating to the right (i.e., positive x-direction) and left,
respectively. The fluid in the intermediate state moves to the
right with a velocity vge = 0.72. Figure 3 shows the results
for a grid of 400 equidistant zones. One recognizes that the
shock is smeared across 4-5 zones and that the largest errors
occur for the postshock density. In Table 11l the errors of D,
S and 7 are displayed for different grid resolutions using the
discrete L-1 norm. Refining the grid the convergence rate of the
solution (column 5 of Table I11) indicates an order of accuracy
of code of roughly 1, which is expected for problems with
discontinuities and which is in good agreement with the New-
tonian version of PPM [22]. This behaviour indicates that the
main features of the method are retained in our relativistic
version. For comparison, we have also listed in Table 111 the
errors of the first-order accurate relativistic Godunov variant
of our method. The corresponding convergence rate is only
0.66 (see Table I1).

Problem 2, usually referred to as the propagation of arelativ-
istic blast wave, was first considered by Norman and Winkler
[8]. The flow pattern is similar to that of Problem 1 but some-
what more extreme. Relativistic effects reduce the postshock
state to a thin dense shell. The fluid in the shell moves with
Vgt = 0.960, while the shock front ahead of it (the blast wave)
propagates with a velocity vs = 0.986. Norman and Winkler
[8] obtained very good results with an adaptive grid of 400
zones using an implicit hydro-code with artificial viscosity.
Figure 4 shows the results obtained with our relativistic PPM
on afixed grid of 400 equidistant zones. As in Problem 1, the
largest errors arise in the postshock state. To achieve a con-
verged solution agrid of 2000 zonesisrequired. TableV gives

Tp/10%%3

0.0 0.8 1.0

FIG. 4. Exact (solid line) and numerical profiles of pressure, density, and
flow velocity of arelativistic shock tube (Problem 2; seetext). The computations
were performed on an equidistant grid of 400 zones.

the L-1 norm error for different grid resolutions, together with
the convergence rate for both the relativistic PPM and the
relativistic Godunov method.

It is worthwhile to note that in both shock tube problems,
the accuracy obtained on the finest grid with the relativistic
Godunov variant of our method is already achieved by the
relativistic PPM with a four times coarser grid.

4.3. Collision of Two Relativistic Blast Waves

The collision of two strong blast waves [23] was used by
Woodward and Colella [22] to compare the performance of
several numerical methods (including PPM) in classical hydro-
dynamics. In their test calculations theinitial condition consists
of three constant states of an ideal gas with v = 1.4. The
density is unity and the velocity vanishes everywhere in the
interval [0, 1] covered by the grid. Reflecting wall conditions
areused at x = 0 and x = 1. In the left state (x < 0.1) the
pressure p = 10%, while in the right state (x > 0.9) p = 10?

TABLE IV

L — 1 Norm Errors of Conserved Quantities and Convergence Rates
Corresponding to Problem 2 at t = 0.36 for Relativistic PPM and
Godunov’s Method (Superscript G)

Ax  [ED)L IES): [EC): r [EO)E  re
w 6.18E — 0L 109E + 01 110E + 01 7.06E — 01

@ 494E — 0L 661E + 00 6.43E+00 032 6.38E— 01 0.15
@ 321E— 0L 425E+ 00 4.10E+ 00 062 545E - 01 023
s L78E— 0L 271E+ 00 267E+00 085 463E— 01 024
s L1O00E— 01 183E+ 00 189E + 00 0.83 366E— 01 034

Note. [E(a)|l, = =; Axla — Ay, where A is the exact solution at x = X.
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(1) Exact (solid line) and numerical density profile of the colliding relativistic blast wave problem before the interaction of the waves. The

computations were performed on an equidistant grid of 4000 zones. (2) Same as (1) but showing the flow velocity.

holds. In the central state (0.1 < x < 0.9) the initia pressure
p=102

The early evolution is characterized by the development of
two strong blast waves, which propagate into the cold central
gas. These waves are followed by thin shells of dense material.
At t = 0.028, the shells collide near x = 0.69, resulting in a
multipleinteraction of strong shocks and rarefactions with each
other and with contact discontinuities. Much of the wave inter-
action takes place in a narrow region of size Ax = 0.2. This
test is considered as a very severe one, in the sense that it
contains the most challenging ingredients that can appear in
one-dimensional hydrodynamics, i.e., strong shocks, narrow
structures, and interaction of discontinuities.

We have considered the same initial conditions to test our
relativistic code. While in [22] a special version of PPM is
used to produce the most accurate solution for the interaction,
we have relied on the exact solution of the relativistic Riemann
problem [17] to construct the analytical solution of the inter-
acting blast wave problem. Note that this exact solution is also
used in our code to calculate the numerical fluxes. Based on the
exact solution of therelativistic Riemann problem, an analytical
solution to the blast wave collision problem can be obtained
for epochs prior to interactions with the rarefaction waves. For
this reason, we have used outflow boundary conditions at x =
0 and x = 1 (to avoid the reflection and subsequent interaction
of the rarefaction waves produced by the initial data) and
stopped our calculations after the interaction of the leading
shocks.

Theevolution of the system isdescribed in detail in Appendix
Il. The (dimensionless) propagation speed of the two blast
waves is slower than in the Newtonian case, but very close to
the speed of light (0.9776 and —0.9274 for the shock waves
propagating to the right and left, respectively). Hence, the shock

interaction occurs later than in the Newtonian problem, namely
at t = 0.420. For the same reason, the dense shells are thinner,
having a width at the time of the collision of Ax = 0.008
and Ax = 0.019 for the left and right shells, respectively.
Consequently, the interaction is limited to an extremely narrow
region of size Ax =~ 0.015. Because of the narrowness of the
structures one has to use of a very fine grid to resolve the
structures properly. In the calculations presented here we have
used a grid of 4000 equidistant zones.

Figure 5 shows the density and velocity profiles of the flow
prior to the shock collision at timet = 0.20. The relative error
inthe density of the left (right) shell never exceeds 2.0% (0.6%)
and has a value of about 1.0% (0.5%) at the moment of shock
collision. The quality of the numerical solution is drastically
degraded when the simul ations are performed with the Godunov
variant of our method. At t = 0.20 the relative errors in the
density of the left (right) shell are about 50% (16%) and drop
only dlightly to a value of about 40% (5%) at the time of
collision (t = 0.420).

The collision of the shells produces a region of very high
density bounded by two shocks. The density jump across the
shock propagating to the left (right) is 7.26 (12.06); i.e., the
value lies well above the classical limit for strong shocks (6.0
for y = 1.4). In Fig. 6 a snapshot of the system is displayed
after the interaction has occurred. Compared to Fig. 5 alargely
different scale had to be used in the density plot of Fig. 6 to
includethe narrow dense new states produced by theinteraction.
Obviously, our relativistic PPM code satisfactorily resolvesthe
structure of the collision region, the maximum relative error in
the density distribution being less than 2.0%. Using the Godu-
nov variant of our method, the new states are much more
smeared out and the positions of the leading shocks are wrong
(see Fig. 6).
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but showing the flow velocity.

5. CONCLUSIONS

We have presented and tested an extension to one-dimen-
siona relativistic hydrodynamics of the well-known PPM
method of Colella and Woodward [20]. The results obtained
for problems involving ultrarelativistic flows, strong shocks,
and interacting discontinuities and the comparison with Godu-
nov's method demonstrate the superior accuracy and perfor-
mance of our relativistic PPM hydrodynamics code. Inthe code,
for the first time, an exact relativistic Riemann solver is used
to compute the numerical fluxes across zone interfaces. The
modular structure of the code very easily alows the incorpora-
tion of approximate relativistic Riemann solvers, too.

We also provide the exact solution of the relativistic counter-
part of the collision of two blast waves [22] (see Appendix II).
This solution can be used as a challenging 1D test case to
calibrate relativistic hydrodynamics codes.

Finaly, we mention that the method can be extended in a
straightforward manner to treat also multidimensiona relativis-
tic flows. A particular multidimensional relativistic PPM code,
based on an approximate rel ativistic Riemann solver has already
been developed and successfully applied to the simulations of
relativistic jets [28].

APPENDIX I: RECONSTRUCTION PROCEDURE

In this apprendix we give the details of the interpolation
procedure used in our relativistic version of PPM. Although
this procedure is identical to that in the original PPM formula-
tion, we will repeat the formulae here for completeness.

Sep 1. First, interpolated values of a (where a stands for
any of the quantitiesp, p, v) are calculated at all zone interfaces
j + 3. These interpolated interface values gy, are obtained
using the quartic polynomial uniquely determined by the five

1.0 e

0.5

-0.5

L L B L BB A

o Godunov
- + Relativistic PPM

e b e e

~1.0 N T S O R R SR !
0.46 0.48 0.50 0.52 0.54
X

(1) Same as Fig. 5(1) but after the blast wave interaction. Note the change in scale on both axes with respect to Fig. 5(1). (2) Same as Fig. 6(1)

zone-averaged values g, 81, &, 8.1, and a,.,. Theexpression
for a4, then reads

_ Ax o _a
Q1= 8 + Ax + A (a+1— &)

N 1 « { 2A%;. 1 AX
Ei:—l AXH—k AXJ' + AXHl (59)
Ax_ + A Axio+ Ax,-ﬂ} L
x [2ij T A, 2Ax., tAx @ @)
Ax-1 AX AXi1 AXjio
Ax 20% + A% Onfye1 + Ax‘”Axj + 2A%, 15 a’}
with
ondy = min(|da|, 21 — 34|, |31 — & /)sign (9a)),
if (a1 —a)@—a-1)>0, (60)
=0, otherwise,
where
Ax
&= AX_1 + A% + AXiyq (61)
2Ax, 1+Ax, _ Ax, ZAX,+l }

Using éna;, instead of &g, in Eq. (60) guarantees that a4, lies
in the range of values defined by & and a;.,. This calculation
yieldsavalue of g, whichisthird-order accurate for nonequi-
distant grids, even where the zone size changes discontinu-
ously [20].
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In smooth parts of the flow, away from extrema, the limiting
values of a at the left and right interface, a, ; = Iiquxma(x)
and ag | = Iimxﬁywza(x) are then given by the relation

A j+1 = AR,j = Qit12- (62)
The values of a_; and a,; have to be modified later so that
the unique parabola defined by &, j, az j, and g is a monotone

functionin each cell, thereby introducing discontinuities at zone
interfaces (see Step 4).

Sep 2. Theinterpolation procedure described in Step 1 has
to be dightly modified to produce narrower profiles in the
vicinity of acontact discontinuity. Thisprocessis called contact
steepening. As suggested in [20], we consider that a jump is
predominantly a contact discontinuity, if the condition

. P = Pl - [P1 = P
min(pj.1, pi-1)  MIN(P;1, P-1)

yK (63)

holds, where K; is a constant. In al zones | satisfying (63) the
density distribution is steepened by modifying the values a,
and ag ; according to

a_;j—a (11— ) +almn,

agj—aRi(l—m)+ ag,j Ui (64)
with
5m j— 5m j+
al =g+ %1 , akj=a.— %1 , (65)
and
m = max[0, min(n(% — 1), 1]. (66)

In this last expression, 7 and »@ are free parameters, while
7, is defined as

o (52a,-+1 — 52@-1) ((X,- — X+ (X1 — >q)3> '

X1 X1 1 &1
it — 6%.1-6%1>0, a1 — & (67)
— e min(laj., [a-1) > 0
=0, otherwise, (68)
where
1
29 —
g a‘ AX‘-_]_ + AXJ + AX"H_
(69)

X[&H—a__a—al]
AX +AX  AX+ Ao |

Sep 3. Near strong shocks the order of the method is re-
duced locally to avoid spurious postshock oscillations. Thisis
acheived by flattening the distribution inside the corresponding
zones. In these zones the quantities a, ; and ag; defined above
are substituted by

ai=afi+a;1-f),
aki = af +ag,(1 1) (70)
The weight function f; is given by the maximum of ?, and
fi+s, where

f= min<1,wj max(O, (M - w(1)>w(2)>> . (70)
Bi+2 = P2

The index s of ?ﬁﬁ is either +1 or —1 depending on whether
the difference p.; — p-1 is positive or negative. Thisway zone
j t+ 5 isaways the next zone upstream of zone j, if the latter
is in a shock.

In Eq. (71), the quotient (p.1 — P-1)/(P+2 — P-2) is a
measure of the steepness of the pressure jump across the zone
j, ¥ and @ are constants, and w; is equal to 1, if the zone
is inside a shock and zero otherwise. The criterion for a zone
being inside a shock is

|P1 — Pl > £@

min (p+1, P-1) (72)

Uj-1 > Uj+1.

Sep 4. Now we are ready to describe the monotonization
step (see Eq. (1.10) of [20]). In smooth parts of the flow, away
from extrema, a_ j+1 = &k, = 12, SO that the interpolation
is continuous at X;,1,. However, near discontinuities the values
of a_; and ag ; obtained in Step 1 to 3 are modified such that
in each zone| the interpolation parabolaisamonotone function,
which takes on only values between a,; and ag;. According to
[20] the following modifications are necessary:

aj—a,a;—g if(ag;—a)g—a ;)=0 (73
a,j— 3 — 2, if(k;—a,)
agtar) @i —ay)
x (g - gt o (74)
agj— 33 —2a; if—(ag;—a )
X<aj_aL,,-v;aR,j>>(aR,,-—6aL,j)2_ 75)

Note that in RHD the monotonic character of the reconstruction
algorithmm ensures that the interpolated interface velocities
are always smaller than the speed of light, if this holds for the
zone averaged values, too.

The parameters K,, 7%, 7@, and &@, introduced in Step 2,
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TABLE V
Values of the Reconstruction Parameters Used in the Calculations

Ko 7o 7 &0 o w? £@

1.0 5.0 0.05 0.1 0.52 10.0 1.0

and %, w®@, and £@ introduced in Step 3 are, in principle,
problem dependent; i.e., their values have to be fixed for every
calculation. Although the quality of the results depends on the
values of these parameters, a set of values can be found, how-
ever, which is well suited for a wide range of problems. The
parameter values used in al our test calculations are given in
Table V.

APPENDIX I1: EXACT SOLUTION FOR THE COLLISION
OF TWO RELATIVISTIC BLAST WAVES

In thisappendix we describe the exact solution to the problem
of the collision of relativistic blast waves for the initial data
given in Section 4.3. The problem of the collision of two blast
waves was introduced in classical hydrodynamics by Wood-
ward and Colella [22] to test the accuracy and performance
of various finite difference methods in case of a chalenging
numerical problem. The multiple interactions of discontinuities
and rarefactions together with the resulting narrow flow struc-
tures make this problem an extremely difficult test case for any
Eulerian method. In its relativistic version, we have changed
the boundary conditions, however (from reflecting to outflow),
to avoid the reflection and subsequent interaction of rarefaction
waves. Thus, the flow structure is less complicated than in the
Newtonian case. However, due to relativistic effects narrower
structures and larger jumps occur in the flow.

Early on, the flow consists of two blast waves created by
the decay of the initial discontinuitiesat x = 0.1 and x = 0.9.
The two waves propagate towards each other and collide at
t = 0.4200. We have used the procedure described in [17] to
solve the Riemann problems at x = 0.1 and x = 0.9 which
determine the solution before the collision. Up to this stage,
the solution consists of nine different regions (R1 to R9; see
Fig. 7) linked at points x; to Xg, where x is the position of the
interface between regions Ri and R(i + 1). Regions R1, R5,
and R9 correspond to the initial states, whereas regions R3 and
R4 as well asregions R6 and R7 are the intermediate states of
the Riemann problem defined by theinitial discontinuity at x =
0.1andx = 0.9, respectively. The values of the hydrodynamical
guantitiesin these constant statesaregivenin Table VI. Finaly,
regions R2 and R8 are rarefaction waves.

Besides the values of the hydrodynamical quantities in the
constant states, the complete analytical solution must also give
the position of the pointsx; (i = 1, ..., 8) asafunction of time,
and the flow quantities inside the rarefaction waves. Points x;

20.0
15.0 — R4 |
10.0 = k6 —
Q . ]
5.0 — _
[R1 R5 R
[~ | LB
0.0 3 R7 7
. L [ L [
0.0 0.2 0.4 0.6 0.8 1.0

FIG.7. Flow pattern of the colliding relativistic blast wave problem before
the interaction of the waves. The values of the hydrodynamica quantities in
theregions R1 to R9, which characterize the flow, are givenin Table VI. They
have been computed using the formulae of Appendix I1.

and x, are the positions of the head and tail of the rarefaction
wave in region R2. They move according to

(t) = 0.1 — 0.6324t
%(t) = 0.1+ 0.8222t.

(76)
(77)

Inside R2, i.e., x;(t) < X < X,(t), the distribution of the hydrody-
namical quantities can be obtained in two steps. First, one
solves the algebraic system of equations for the sound and flow
velocity given by

va(X, 1) — (x — 0.2)/t
1—vy(x t)(x — 0.2)/t

QL+v)Axt)—(1—vy
L+v)A )+ 2 —vy)’

e ) = (78)

v(X, 1) =

(79)

TABLE VI
Constant States of the Relativistic Blast Wave Collision Problem

Region p p v c
R1 1.000E + 03  1.000E + 00 0.00E + 00 6.323E — 01
R3 1471E + 01  4.910E — 02 957E — 01 6.321E — 01
R4 1471E + 01 1439 + 01 957E — 01 5591E - 01
R5 1.000E — 02  1.000E + 00 0.00E + 00 1.163E — 01
R6 4639 + 00 9.720E + 00 —8.82E — 01 5.002E — 01
R7 4639E + 00 1.120E -01 —882E-01 6.303E — 01
R9 1.000E + 02  1.000E + 00 0.00E + 00 6.316E — 01
C1 3.698E + 02  1.044E + 02 456E — 01  6.084E — 01
c2 3.698E + 02  1.173E + 02 456E — 01  6.056E — 01
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(1) Sequence of snapshots showing the evolution of the density profile of the colliding relativistic blast wave problem up to the moment, when

the interaction of the waves occurs. The profiles have been computed using the formulae of Appendix 1. (2) Same as Fig. 8(1) but showing the flow velocity.

where
_(Vy—loexVy -1+ q)wﬁ
reo- (Ve e e

Then, the isentropic character of the flow inside the rarefaction
can be used to get the density and pressure profiles through

(CBx, D(cE — y + 1)\ VoD
P D = <C§(C%(X, )—y+ 1)> p1 (81)
and
P D = (@)y Py (82)

Point X; is the locus of a contact discontinuity. Hence, it moves
with the velocity of the fluid in regions R3 and R4, i.e,,
Xs(t) = 0.1 + 0.9570t. (83)
Paoint x,, finaly, gives the position of the shock heading the
left blast wave propagating towards the right; i.e., its motion
is governed by
X,(t) = 0.1 + 0.9776t, (84)
where the shock speed has been calculated from the Rankine—
Hugoniot conditions for the jump between states R4 and R5.
The blast wave on the right has a similar structure, with a
heading shock at x; propagating into the central initial state, a

contact discontinuity at xs separating regions R6 and R7, and
a rarefaction wave propagating to the right bounded by points

X7 and xg. The positions of all these points as afunction of time
are given by

xs(t) = 0.9 — 0.9274t (85)
xe(t) = 0.9 — 0.8820t (86)
x:(t) = 0.9 — 0.5668t (87)
Xa(t) = 0.9 + 0.6315t. (88)

Inside the rarefaction on the right, i.e., for x,(tf) = x = xg(t),
the solution of the following algebraic system of equations

vg(X, 1) — (x — 0.9)/t
1 — vg(x, t)(x — 0.9)/t
(At v)A (X 1) — (1 — vy
vs(, Y = 1+ vg)A_(X, 1) + (1 — vg)

c(x, 1) = (89)

(90)

with

= Vy—1-cxt)Vy—1+ Cg)zNﬁ
A-(x1) <\/7T1 ot Vy —1—c (91)

gives the sound and fluid velocity. Then, Egs. (81) and (82)
allow one to calculate pg(X, t) and pg(X, t), if the indices 1 and
2 are substituted by 9 and 8, respectively.

Figure 8 shows four snapshots of the evolution of the flow,
including the moment of the collision of the blast waves at
t = 0.4200. At this moment, the collision (of regions R4 and
R6) occurs at x = 0.5106, giving rise to two new states C1
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FIG.9. Detailsof thedensity profile of the colliding relativistic blast wave
problem showing the new states (regions C1 and C2; see Table VI) produced
by the interaction of the two waves. Note the change in scale on both axes
with respect to Fig. 8(1). The profile has been computed using the formulae
of Appendix II.

and C2 (see Table VI and Fig. 9). The solution of the Riemann
problem defined by the states R4 (left) and R6 (right) allows
us to determine these new states, as well as the positions of
the two shock waves and the contact discontinuity (X, X, and
X4, respectively) which separates the newly created regions
from each other and from the former states R4 and R6,

X (t) = 0.5105 + 0.088(t — 0.4200) (92)
Xe(t) = 0.5105 + 0.456(t — 0.4200) (93)
Xe(t) = 0.5105 + 0.703(t — 0.4200). (94)

The solution described above applies until t = 0.4300, when
the next interaction (between states R4 and C1) takes place.
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